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The previous studies on the consistency of discretization equation mainly focused on the finite difference method, but the issue
of consistency still remains with several problems far from totally solved in the actual numerical computation. For instance, the
consistency problem is involved in the numerical case where the boundary variables are solved explicitly while the variables away
from the boundary are solved implicitly. And when the coefficient of discretization equation of nonlinear numerical case is the
function of variables, calculating the coefficient explicitly and the variables implicitly might also give rise to consistency problem.
Thus the present paper mainly researches the consistency problems involved in the explicit treatment of the second and third
boundary conditions and that of thermal conductivity which is the function of temperature.The numerical results indicate that the
consistency problem should be paid more attention and not be neglected in the practical computation.

1. Introduction

Consistency is one of the most important criteria to mea-
sure the quality of numerical computation method. If the
truncation error of discretization equation is close to zero
when the time and space steps are set to be very small,
it indicates that this discretization equation is consistent
with the correspondingly partial differential equation [1]. For
the one-dimensional problem, when the truncation error
of discretization equation presents the form of 𝑂(Δ𝑡𝑚, Δ𝑥𝑛)
(𝑚, 𝑛 are greater than zero) [2], the discretization equation is
considered to have consistency. For instance, the equations
discretized by the explicit scheme [3], the fully implicit
scheme, or theC-N scheme [4] are all consistent.On the other
hand, if the expression of truncation error contains Δ𝑡𝑝/Δ𝑥𝑞
(𝑝, 𝑞 are greater than zero), consistency is only satisfied when
Δ𝑡
𝑝 is the higher order infinitesimal of Δ𝑥𝑞. This kind of

discrete scheme, such as the Du Fort-Frankel scheme [5], is
regarded to be conditionally consistent. Similarly, when there
is Δ𝑥𝑞/Δ𝑡𝑝 in the truncation error expression, the discrete
scheme, for example, the Lax-Friedrichs scheme [6], is also

conditionally consistent under the circumstance that Δ𝑥𝑞 is
the higher order infinitesimal of Δ𝑡𝑝.

With theDu Fort-Frankel scheme, for the same derivative
term (diffusion term, convective term, and so on), variables
of the same space level take numerical values of different time
levels. This would give rise to the appearance of Δ𝑡𝑝/Δ𝑥𝑞,
and during the computation process, calculation of the same
derivative term would be uncoordinated. And these are
considered to be the essential reasons for the conditional con-
sistency.

During recent years, beside the schemes which are condi-
tionally consistent, another scheme with which the variables
of the same derivative term (diffusion term or convective
term) are set to be values of different time levels has been
widely employed: (1) to deal with the second and third
boundary conditions and (2) to deal with the nonlinear equa-
tions with variable physical properties linearly. In the present
paper, this kind of scheme is named as “hybrid implicit-
explicit scheme,” and through comprehensive analyses, the
hybrid scheme is thought to influence the consistency of
fully implicit scheme. However, the consistency study of this
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Figure 1: Boundary conditions of one-dimensional unsteady diffusion problem with constant physical properties.
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Figure 2: Boundary conditions of one-dimensional unsteady diffusion problem with variable physical properties.

hybrid scheme is not reported in the literatures of the recent
twenty years, and to some extent its significance did not get
enough attention from researchers.

Hence, in the present paper, the consistency of the hybrid
implicit-explicit scheme is investigated comprehensively and
systematically. In the following text, the process and results
of the investigation are shown as follows. In Section 2,
beginning from the simple one-dimensional model of finite
difference method, the theoretical derivation of consistency
is described in detail. Subsequently, in Section 3 the study
is extended to the two-dimensional model of finite volume
method, and the hybrid scheme is proved to be conditionally
consistent by typical numerical cases. Finally, related analyses
and conclusions are given in Section 4.

2. Consistency Analysis of the Hybrid
Implicit-Explicit Scheme

In this section, employing the hybrid implicit-explicit
scheme, the theoretical consistency derivations of problems
involving the second and third boundary conditions, and the
linear treatment of nonlinear equationswith variable physical
properties are presented very carefully.

2.1. Problems Involving the Second and Third Boundary Con-
ditions. It is known that the governing partial differential
equation of one-dimensional unsteady diffusion problem is
as follows:

𝜕 (𝜌𝜙)

𝜕𝑡
=
𝜕

𝜕𝑥
(Γ
𝜕𝜙

𝜕𝑥
) + 𝑆. (1)

The physical properties are constant, and there is no heat
source (boundary conditions are shown in Figure 1); thus the
differential operator of the node (𝑖, 𝑛 + 1) can be obtained as

𝐿(𝜙)
𝑖,𝑛+1

= 𝜌
𝜕𝜙

𝜕𝑡

𝑖,𝑛+1

− Γ
𝜕
2
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. (2)

Discretizing the original governing equation by finite
difference method, in which the time term is dealt with
fully implicit scheme, second-order central difference scheme
is adopted to discretize the diffusion term, and boundary
renewal method is employed to treat the second and third
boundary conditions, (1) can be transformed into fully

implicit difference equation, and the differential operator of
𝜙
𝑛+1

𝑖
is as follows:

𝐿
Δ𝑥,Δ𝑡
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Δ𝑥2
. (3)

With the hybrid implicit-explicit scheme, the value of
variable on the left boundary is not updated until the inner
iteration comes to convergence. Under this circumstance,
the differential operators of the nodes away from the left
boundary are still (3) while that of node adjacent to the left
boundary are as below:

𝐿
Δ𝑥,Δ𝑡

(𝜙
𝑛+1

2
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. (4)

Calculating the truncation errors of equations discretized
by fully implicit scheme and the hybrid implicit-explicit
scheme, the truncation errors of these two schemes (𝑅1𝑛+1

𝑖

and 𝑅2𝑛+1
𝑖

, resp.) can be obtained as follows:

𝑅1
𝑛+1

𝑖
= 𝐿
Δ𝑥,Δ𝑡

(𝜙
𝑛+1

𝑖
) − 𝐿(𝜙)

𝑖,𝑛+1
= 𝑂 (Δ𝑥

2

+ Δ𝑡) ,

𝑅2
𝑛+1

𝑖
= 𝐿
Δ𝑥,Δ𝑡

(𝜙
𝑛

𝑖
) − 𝐿(𝜙)

𝑖,𝑛

=

{{{{{

{{{{{

{

𝑂(
Δ𝑡

Δ𝑥2
+ Δ𝑥
2

+ Δ𝑡) ,

node adjacent to left boundary,
𝑂 (Δ𝑥

2

+ Δ𝑡) ,

other inner nodes.

(5)

Through the above derivation, it is easily concluded that
fully implicit scheme is unconditionally consistent, while the
hybrid implicit-explicit scheme is conditionally consistent.
For the problems involving the second and third boundary
conditions, only when Δ𝑡 is the second-order infinitesimal
of Δ𝑥, the consistency of equation in the boundary node
position can be satisfied. And in the positions of other nodes
which are not adjacent to the boundary, the consistency of
equation is unconditionally consistent.

2.2. Problems Involving the Linear Treatment of Nonlinear
Equations with Variable Physical Properties. Taking one-
dimensional unsteady diffusion problem with variable physi-
cal properties as an example, for the convenience of analysis,
there is no heat source, and boundaries are all of the first
boundary condition (as shown in Figure 2). The density of
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Figure 3: Boundary conditions of two-dimensional heat conduction problemwith constant properties: (a) the third boundary condition and
(b) the second boundary condition.

diffusion medium 𝜌 remains constant during the computa-
tion process, and the general diffusion coefficient Γ is in a
linear relationship with the value of variable 𝜙 as Γ = Γ

0
(1 +

𝑏𝜙).
Equation (1) is mathematically equivalent to the expres-

sion below:
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For (6), the differential operator of the node (𝑖, 𝑛 + 1) is as
follows:
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(7)

Discrediting the original governing equation by finite
difference method, in which the time term is dealt with fully
implicit scheme and second-order central difference scheme
is used to discretize the diffusion term, (1) can be transformed
into fully implicit difference equation and the differential
operator of 𝜙𝑛+1

𝑖
is as follows:
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(8)

Employing the hybrid implicit-explicit scheme, the gen-
eral diffusion coefficient Γ is not renewed in the loop of inner

iteration, and in such case the differential operator can be
written as
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(9)

Similar to the calculation in Section 2.1, the truncation
error of fully implicit scheme 𝑅1𝑛+1

𝑖
and that of the hybrid

implicit-explicit scheme 𝑅2𝑛+1
𝑖

can be obtained as follows:
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(10)

From the previous derivation, it is found that the fully
implicit scheme is unconditionally consistent, while the
hybrid implicit-explicit scheme is conditionally consistent at
the premise that Δ𝑡 is the second-order infinitesimal of Δ𝑥.

3. Numerical Results and Analyses

In the previous section, for one-dimensional model of finite
difference method, the consistencies of fully implicit scheme
and the hybrid implicit-explicit scheme are compared and
analyzed. The corresponding conclusions are extended to
two-dimensional finite volume method in this section, and
numerical cases are used to illustrate the consistencies of fully
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Figure 4: Comparison between the temperature fields of fully implicit scheme and the hybrid implicit-explicit scheme with different time
steps for the second boundary condition: (a) Δ𝑡 = 10000 s, (b) Δ𝑡 = 5000 s, (c) Δ𝑡 = 1000 s, and (d) Δ𝑡 = 500 s.

implicit scheme and the hybrid implicit-explicit scheme for
complicated models. The size of the computational domains
in Sections 3.1 and 3.2 is set to be 1𝑚 × 1𝑚, and the same
uniform grid (80 × 80) is employed for all cases.

3.1. Cases Involving the Second and Third Boundary Condi-
tions. Taking the two-dimensional heat conduction problem
of Chrome-Nickel steel (17–19Cr/9–13Ni) as an example, the
physical parameters are set to be constant as follows: 𝜆 =

15W/(m⋅∘C), 𝜌 = 7839 kg/m3, and 𝑐
𝑝
= 460 J/(kg⋅∘C). And

in this paper when the maximum absolute error between
the temperature fields of two adjacent iterations is smaller

than 1 × 10−12, the inner iteration is considered to reach
convergence. As shown in Figure 3, the unsteady case of the
second boundary condition and that of the third boundary
condition is studied when the computation time reaches
10000 s and 100000 s, respectively.

Figure 4 presents the calculation results of fully implicit
scheme and the hybrid implicit-explicit scheme with dif-
ferent time steps for the second boundary condition. As
shown in Figures 4(a) and 4(b), when the time step is
relatively large, the numerical errors are inevitable for both
schemes while the error of fully implicit scheme is relatively
small and the corresponding temperature field could reflect
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Figure 5: Comparison between the temperature fields of fully implicit scheme and the hybrid implicit-explicit scheme with different time
steps for the third boundary condition: (a) Δ𝑡 = 100000 s, (b) Δ𝑡 = 50000 s, (c) Δ𝑡 = 10000 s, and (d) Δ𝑡 = 5000 s.

the phenomenon of diffusion. However, the temperature field
of the hybrid implicit-explicit scheme deviates greatly from
the time step independent solution because the consistency
condition is not satisfied due to the specific large time step.
Through Figures 4(c) and 4(d), with relatively small time
step, even though there are still numerical errors of the
two different schemes, the solution of fully implicit method
is close to the time step independent solution and the
consistency condition of the hybrid implicit-explicit scheme
is also satisfied. When all the two schemes obtain the time
step solutions (for fully implicit schemeΔ𝑡 = 100 s and for the
hybrid implicit-explicit scheme Δ𝑡 = 5 s), the computation

quantity of one inner iteration with the hybrid scheme is
less because the renewal of boundary temperature is avoided
in the computation process. However, the number of inner
iteration with the hybrid scheme is about 20 times larger
than that with fully implicit scheme, and its total computation
time consumption is about 5.08 times larger than that with
the latter one. In short, the numerical results reflect the
low computation efficiency with the hybrid implicit-explicit
scheme.

Similarly, Figure 5 shows the calculation results of fully
implicit scheme and the hybrid implicit-explicit scheme with
different time steps for the third boundary condition. From
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Figures 5(a) and 5(b), it is found that even the time step is
relatively large, the numerical error of fully implicit scheme
is relatively small, and the time step independent solution
can be obtained with Δ𝑡 = 5000 s. On the other hand, the
deviation of temperature field of the hybrid implicit-explicit
scheme is too large to illustrate diffusion due to the fact that
the consistency condition is not satisfied in such case and
the calculations of boundary nodes and inner nodes are not
coordinated. Through Figures 5(c) and 5(d), with relatively
small time step, although the consistency condition of the
hybrid implicit-explicit scheme is satisfied, the numerical
error is still quite large while the numerical error of fully
implicit scheme is very small and the time step independent
solution can be achieved with Δ𝑡 = 5000 s. When all the
two schemes obtain the time step solutions (for fully implicit
scheme Δ𝑡 = 5000 s and for the hybrid implicit-explicit
scheme Δ𝑡 = 100 s), the number of inner iteration number
with the hybrid scheme is about 50 times larger than that
with fully implicit scheme, and its total computation time
consumption is about 1.93 times larger than that with the
latter one, which leads to the same conclusion as the cases
in Figure 4.

3.2. Cases Involving the Linear Treatment of Nonlinear Equa-
tions with Variable Physical Properties. Taking the two-
dimensional heat conduction problem with variable physical
properties as an example, the general physical parameters are
set as follows: 𝜆 = 𝜆

0
(1 + 𝑏𝑇), 𝜆

0
= 0.00075W/(m ⋅

∘C),
𝑏 = 10/

∘C, and 𝜌 = 1000 kg/m3. And in the paper when the
maximum absolute error between the fluxes of two adjacent
iterations is smaller than 1 × 10

−8, the inner iteration is
considered to reach convergence. As shown in Figure 6, the
unsteady case of the first boundary condition is studied when
the computation time reaches 50 s.

In Figure 7, the calculation results of fully implicit scheme
and the hybrid implicit-explicit scheme with different time
steps and variable physical properties are presented. As
shown in Figures 7(a) and 7(b), when the time step is
relatively large, the numerical errors are inevitable for both
schemes while the error of fully implicit scheme is rela-
tively small and the corresponding flux could reflect the
phenomenon of diffusion. However, the flux of the hybrid
implicit-explicit scheme deviates greatly from the time step
independent solution because the consistency condition is
not satisfied with the specific large time step. Through
Figures 7(c) and 7(d), with relatively small time step, the
solution of fully implicit method is close to the time step
independent solution, and the consistency condition of the
hybrid implicit-explicit scheme is satisfied, but it still suffers
from great numerical deviation. When all the two schemes
reach the time step solutions (for fully implicit scheme Δ𝑡 =
0.01 s and for the hybrid implicit-explicit scheme Δ𝑡 =

0.0005 s), the computation quantity of one inner iteration
with the hybrid scheme is less due to the fact that the renewal
of flux is not adopted in the computation process. However,
the number of inner iterationwith the hybrid scheme is about
20 times larger than that with fully implicit scheme, and its
time consumption is 1.68 times larger than that with the latter
one.

4. Conclusions

This paper mainly studies and analyzes the consistency issue
with the hybrid implicit-explicit scheme involved in typical
cases as follows: (1) under the second and third boundary
conditions, the boundary nodes are treated explicitly while
the inner nodes are dealt with implicitly; (2) when the
thermal conductivity is the function of temperature, explicit
treatment of thermal conductivity is conducted for the
discretization of governing equation.

Through the numerical results and analyses, the following
conclusions can be obtained.

(1) The consistency problems exist in the two cases
mentioned above obviously. When the condition of
consistency is not satisfied due to large time step,
the discretized equations of the above two cases are
not consistent with the primitive partial difference
equations. Especially when the time step is very
large, the numerical solutions deviate greatly from the
exact solution even the changing trends are totally
different.

(2) Through all the numerical cases, it is found that
computation efficiency of the hybrid implicit-explicit
scheme is not as good as that of fully implicit scheme.
Though the explicit operation in the hybrid scheme
reduces the computation quantity of single iteration,
the much smaller time step due to consistency
condition gives rise to the increaseof iteration
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Figure 7: Comparison between the temperature fields of fully implicit scheme and the hybrid implicit-explicit scheme with different time
steps for the heat conduction problem with variable physical properties: (a) Δ𝑡 = 50 s, (b) Δ𝑡 = 5 s, (c) Δ𝑡 = 0.5 s, and (d) Δ𝑡 = 0.05 s.

number and the total computation quantity is larger
than that of fully implicit scheme.

Nomenclature

𝑐
𝑝
: Specific heat capacity (J/(kg⋅∘C))

𝑅
𝑛

𝑖
: Truncation error

Δ𝑡: Time step (s)
𝑇: Temperature (∘C)
Δ𝑥: Space step (m)
𝑆: General source term
𝐿(): Differential operator.

Greek Symbols

Γ: General diffusion coefficient
𝜆: Thermal conductivity (W/(m⋅∘C))
𝜌: Density (Kg/m3)
𝜙: General variable.
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