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The study on the application of unstructured grids in the solution of problems in two-dimensional cylin-
drical coordinate systems (r–z) is scarce, since one of the challenges facing this application is the accurate
calculation of the control volumes. In this article, an unstructured grids-based discretization method, in
the framework of a finite volume approach, is presented for the solution of the convection–diffusion
equations in cylindrical coordinate systems. Numerical simulations are presented for the natural convec-
tion and lid-driven cavity flow problems. The numerical results calculated on unstructured grids are
found to be in good agreement with those calculated on fine structured meshes. The employment of
unstructured grids leads to flexibility of the discretization method for irregular domains of any shape.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Cylindrical symmetrical problems are usually involved in the
calculations of heat transfer and fluid flow. In many cases, due to
the symmetry of the computation domain and the solution of the
physical problem, the numerical solution of the flow equations
could be greatly simplified by expressing both the governing equa-
tions and the initial/boundary conditions in a two-dimensional
cylindrical coordinate system. Actually, many practical problems
could be simplified from three-dimensional ones to two-
dimensional ones. There have been many studies on the problems
in regular two-dimensional cylindrical coordinate systems, while
scarce studies are performed on the irregular ones.

Some previous applications of the two-dimensional cylindrical
coordinates to the solution of the three-dimensional cylindrical
symmetrical problems are listed below. Bilgili and Ataer [1] inves-
tigated the heat and mass transfer for hydrogen absorption in an
annular metal hydride bed by a two-dimensional cylindrical coor-
dinate system. Oliveski, Krenzinger et al. [2] analyzed the velocity
and temperature fields inside a tank submitted to internal natural
and mixed convection using a two-dimensional model in the cylin-
drical coordinate system through the finite volume method. Yang
and Tsai [3] presented a numerical study of transient conjugate
heat transfer in a high turbulence air jet impinging over a flat cir-
cular disk using a finite volume method in the two-dimensional
cylindrical coordinate system. Oliveski and Macagnan et al. [4]
investigated the thermal stratification inside a tank containing
thermal oil by a two-dimensional model in the cylindrical
coordinate system with the finite volumes method. Sievers et al.
[5] employed a two-dimensional anisotropic cylindrical coordinate
model with linear triangular finite elements to simulate the stea-
dy-state temperature distribution within the Li-ion cells.

The computational domains discussed in the previous reports
[1–6] are all regular ones, and are all discretized by orthogonal
grids. A few reports [7] presented the employment of unstructured
grids in two-dimensional cylindrical problems, but their concern
was the physical problem in r–h plane (actually a polar coordinate
system), neglecting the gradient in z direction, and thus is different
from the issue we concern in the r–z plane. For a r–z cylindrical
symmetrical domain shown in Fig. 1(a), as a regular one, it could
be mapped by completely orthogonal grids; while for the r–z
domain shown in Fig. 1(b), as an irregular one, it could not be
mapped by orthogonal grids directly, but could be perfectly
mapped by unstructured grids. However, if the unstructured grids
are applied in a two-dimensional cylindrical coordinate system
(r–z), one challenge is the accurate calculation of the control vol-
ume. For structured grids, the calculation of the control volume
is easy, i.e. Vi ¼ rP0DrP0 DzP0 , since DrP0 and DzP0 are available on a
given mesh. But for the unstructured grids in a two-dimensional
cylindrical coordinate system, as the grid face is not parallel to
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Nomenclature

a an arbitrary vector
aP0,aj coefficients of the discretized equation
A bounding surface of a control volume
b source term
d direction vector
dA an infinitesimal surface element
Dj diffusion term
Fj mass flux at surface j
g acceleration due to gravity
Gr Grashof number
H height
L length
Lj length of the jth boundary segment
n a unit vector normal to the surface element
p pressure
Pr Prandtl number
r radius vector
r, h,z radial, angular and axial coordinate respectively
r1 inner radius
r2 outer radius
Re Reynolds number
S general source term
T temperature
U velocity vector
u, v radial and axial velocity component respectively

Greek symbols
a thermal diffusivity
b coefficient of thermal expansion

DVi control volume of node i
DAj jth surface element area of a control volume
p an irrational number, equals 3.14 with two decimal

places, dimensionless
q density
/ a general variable
m kinematic viscosity
C general diffusion coefficient

Subscripts
c cool
CV control volume
h hot
i node number
j surface number of a control volume
P0 interested node number

Superscripts
⁄ representing dimensionless
n normal
c cross

Prefixes
D increment
r gradient
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the coordinate axes, plus different grid cells are of different shapes
and sizes, the calculation of such control volumes is complicated.

To the author’s knowledge, the study on the applications of
unstructured grids in the solution of convection–diffusion prob-
lems in two-dimensional r–z coordinates is not found, and discret-
ization method especially the calculation of the control volume has
not been reported. In this article, an unstructured grids-based dis-
cretization method, in the framework of a finite volume approach,
is proposed for the solution of the convection–diffusion equations
in r–z coordinates, and especially an accurate calculation method
of the control volumes is presented. After that, the discretization
method is validated by three well-designed numerical cases. This
study provides some basis for finite volume method.

2. Governing equations and the discretization method

In the two-dimensional cylindrical coordinate system, continu-
ity equation, momentum equation and energy equation of steady
state can be described by a general governing equation:
z

O r

Ω

z

O r

Ω

(a) (b)

Fig. 1. Two-dimensional regular and irregular cylindrical symmetrical domain: (a)
Regular domain (b) Irregular domain.
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where, / is a general variable; C and S are the general diffusion
coefficient and source term respectively, and details of which for
different equation types and physical problems are listed in Table 1.
The two terms on the left hand side of the equation are the convec-
tion terms; the first two terms on the right hand side are the diffu-
sion terms, and the last term is the general source term. In Table 1,
in the source term of the v momentum equation, the underlined
part is the buoyancy lift which is treated by a Boussinesq
assumption.

The dimensionless equations are derived below taking the
examples of natural convection and lid-driven cavity flow
problems.

For natural convection, the following dimensionless parameters
are defined,

r� ¼ r=L; z� ¼ z=L; u� ¼ qL
l

u; v� ¼ qL
l

v ; T� ¼ T � Tc

Th � Tc
;

p� ¼ qL2

l2 pþ q2gL2

l2 z; Gr ¼ q2bgðTh � TcÞL3=l2
Table 1
Coefficients and source terms of the governing equation for lid-driven cavity and
natural convection problem.

Equation / C⁄ S

Lid-driven cavity Natural convection

Continuity equation 1 0 0 0
Momentum equation u l � @p

@r �
lu
r2 � @p

@r �
lu
r2

v l � @p
@z � @p

@z þ qgbðT � TcÞ
Energy equation T l

Pr
— 0
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Subsequently, the dimensionless governing equations of the natural
convection problem are written as follows:
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For lid-driven cavity flow problem, the following dimensionless
parameters are defined.

u� ¼ u=utop; v� ¼ v=utop; z� ¼ z=L; r� ¼ r=L;

p� ¼ p=qu2
top; Re ¼ qutopL

l

Thus the dimensionless governing equations of lid-driven cavity
flow problem are as follows:
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2.1. An unstructured grids-based finite volume discretization method

On unstructured grids, the steady-state dimensionless convec-
tion–diffusion equation in a tensor form is given by Eq. (7). For dif-
ferent physical problems and equation types, such as the natural
convection problem and lid-driven cavity problem, the coefficients
and source terms are listed in Table 2.

divðU�/�Þ � divðC�grad/�Þ ¼ S� ð7Þ

where U represents the velocity vector, U = ui + vj.
Integrating Eq. (7) over the control volume CV gives:Z

CV
divðU�/�ÞdV� �

Z
CV

divðC�grad/�ÞdV� ¼
Z

CV
S�dV� ð8Þ

Here we introduce Gauss theorem shown as in Eq. (9), which is
applicable to any shape of control volume.Z

CV
div adV ¼

Z
A

n � adA ð9Þ
Table 2
Coefficients and source terms of the dimensionless governing equation for natural
convection and lid-driven cavity problem.

Equation type /� C⁄ S⁄

Natural
convection

Lid-driven
cavity
flow

Natural
convection

Lid-driven
cavity flow

Continuity equation 1 0 1 0 0
Momentum

equation
u⁄ 1 1

Re � @p�

@r� � u�

r�2
� @p�

@r� � 1
Re

u�
r�2

v⁄ 1 1
Re � @p�

@z� þ GrT� 0

Energy equation T⁄ 1
Pr

— 0 —
where a is an arbitrary vector, and n is the unit vector normal to
infinitesimal surface element dA.

Application of Gauss theorem to Eq. (8) gives

Z
A

n � ðU�/�ÞdA� �
Z

A
n � ðC�grad/�ÞdA� ¼

Z
CV

S�P0
dV� ð10Þ

The area integrations are carried out over all surface segments, so
Eq. (10) can be written as follows:

X
all surfaces

Z
DAj

nj � ðU�/�ÞdA� �
X

all surfaces

Z
DAj

nj � ðC�grad/�ÞdA�

¼
Z

CV
S�P0

dV� ð11Þ

where DAj represents the jth surface element area.
The first term on the left hand side is discretized as follows:

X
all surfaces

Z
DAj

nj � ðU�/�ÞdA� ¼
X

all surfaces

Fj/
�
j ð12Þ

where Fj ¼ nj � ðU�/�ÞDA�j .And the second term on the left hand side
is discretized as follows:

Dj ¼ �
Z

DAi

nj � ðC�grad/�ÞdA� ¼ �nj � ðC�grad/�ÞDA�j ð13Þ

Dj is divided into two components, a normal component and a
cross-diffusion component:

Dj ¼ Dn
j þ Dc

j ð14Þ

where
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The gradient on the surface j is determined by

r/�Pj
¼ r/�P0

jr�j � r�Pj
j

d�j
��� ��� þr/�Pj

jr�P0
� r�j j

d�j
��� ��� ð17Þ

The source term is discretized asZ
CV

S�P0
dV ¼ S�P0

DV�P0
ð18Þ

where DV�P0
is the control volume of node P0.

For the unstructured triangular grids, substituting Eqs. (12)–
(18) into Eq. (11) gives
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In Eq. (19),
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Fig. 2. Sketch map of structured and unstructured control volumes in a two-dimensional cylindrical coordinate system: (a) Structured, (b) Unstructured.
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Fig. 5. The stereogram of the triangular control volume (situation 1).

584 G. Yu et al. / International Journal of Heat and Mass Transfer 67 (2013) 581–592
So, the discretized equation is obtained as follows:

aP0 /
�
P0
¼
X3
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aj/
�
j þ b ð21Þ

where
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d�j
jd�j j
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Fig. 4. Combination and split method to determine the control volume (situation
1).
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2).



Fig. 7. The stereogram of the triangular control volume (situation 2).
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Fig. 8. Computation domain and boundary condition for the two-dimensional
cylindrical coordinate natural convection problem.

Table 3
Computation parameters in Example 1.

Case number r�1 r�1=r�2 Gr

1 0.01 0.0099 105

2 0.01 0.0099 106

3 0.1 0.0909 105

4 0.1 0.0909 106

5 1.0 0.5000 105

6 1.0 0.5000 106
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Eqs. (21)–(24) are applicable to any coordinate systems with differ-
ent calculations of surface element area DAj and control volume
DVP0 : Taking structured mesh as an example, in a two-dimensional
Cartesian coordinate system, DAj ¼ DrP0 (the surface parallel to the r
axis) or DAj ¼ DzP0 (the face parallel to the z axis) and the control
r*

Z
*

0 0.5 1
0

0.5

1

Fig. 9. Grid syste
volume can be determined by DVP0 ¼ DrP0 DzP0 ; while in a two-
dimensional cylindrical coordinate system, face vector DAj ¼ rjDzP0

(the left and right faces) or DAj ¼ rP0 DrP0 (the upper and lower faces)
and the control volume can be calculated by DVP0 ¼ rP0 DrP0 DzP0

(shown in Fig. 2(a)). For unstructured grids in a two-dimensional
cylindrical coordinate system, the calculation of each face factor is
also easy to perform, i.e. DAj = rjLj (here rj is the r coordinate of
the midpoint at jth boundary segment, and Lj is the length of the
jth boundary segment), but the calculation of control volume is
complicated since the control volume is an irregular pentahedron
as sketched in Fig. 2(b), of which the size and shape are dependent
on the relative position of the three vertexes. The calculation of the
control volume could not be determined by the same procedures as
structured grids’ and require complicated procedures which will be
proposed in the following section.

2.2. An accurate calculation method of unstructured control volumes
in a two-dimensional cylindrical coordinate system

As discussed above, the calculation of the unstructured control
volume VP0 in a two-dimensional cylindrical coordinate system is a
challenge. And in this section, an accurate calculation method of
unstructured control volume is proposed.

It is known that, a solid of revolution formed by rotating a right
trapezoid by 360 degrees is a circular truncated cone as shown in
Fig. 3, the volume of which is easy to calculate by:

V ¼ p
3

HðR2 þ r2 þ RrÞ ð25Þ

A right trapezoid can be constructed by each edge of the triangular
cell, two lines parallel to r-axis, plus z-axis. The right trapezoids
involving edges AB, BC and AC are named A1, A2 and A3 respectively,
and an example could be found in Fig. 4. Since the area of the
r*

Z
*

0 0.5 1
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0.5

1

m (coarse).
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triangular cell is the algebraic sum of A1, A2 and A3, the solid of rev-
olution by rotating the triangle ABC about z-axis by 360 degrees
could be determined by the combination of three circular truncated
cones formed by rotating A1, A2 and A3.

Define vertex A is the one with the smallest r, B is the one with
the greater z between the others two points and C is the remaining
one. Due to the different relative positions of the three vertexes of
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Fig. 10. Comparison of temperature fields fo
a triangular cell, combination of A1, A2 and A3 may be different.
Based on the above assumptions, there are 6 different relative
positions of the three vertexes of a triangle, i.e. (z1 < z3 < z2 and
r2 < r3), (z1 < z3 < z2 and r2 > r3), (z3 < z2 < z1 and r2 < r3),
(z3 < z2 < z1 and r2 > r3), (z3 < z1 < z2 and r2 < r3) and (z3 < z1 < z2

and r2 > r3). If z1 < z3 < z2 or z3 < z2 < z1, the area of triangular ABC
is SDABC = A1 + A2 � A3 regardless of r. If z3 < z1 < z2, the area of
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Fig. 11. Comparison of centerline velocity components for the natural convection in Example 1.
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Fig. 12. Computation domain and boundary conditions for the cylindrical square
cavity lid-driven cavity problem.

Table 4
Computation parameters in Example 2.

Case number r�1 r�1=r�2 Re

1 0.01 0.0099 103

2 0.1 0.0909 103

3 1.0 0.5000 103
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triangular ABC is SDABC = A2 � A1 � A3 regardless of r. So, there are
only two situations in total, i.e. z1 < z3 < z2 or z3 < z2 < z1 (situation
1), and z3 < z1 < z2 (situation 2).

For situation 1, taking r2 > r3 as an example, the combination
and split method to determine the control volume is shown in
Fig. 4.

Define V1, V2 and V3 are the volumes of the circular truncated
cones formed by A1, A2 and A3, and the coordinates of the vertexes
A, B and C are respectively (r1, z1), (r2, z2) and (r3, z3).
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So V1, V2 and V3 can be calculated by Eq. (25), giving

V1 ¼
p
3
ðz1 � z2Þðr2

1 þ r2
2 þ r1r2Þ

V2 ¼
p
3
ðz2 � z3Þðr2

2 þ r2
3 þ r2r3Þ

V3 ¼
p
3
ðz1 � z3Þðr2

1 þ r2
3 þ r1r3Þ

Since SDABC = A1 + A2 � A3, the control volume of the solid of revolu-
tion formed by rotating triangle ABC by 360 degrees can be calcu-
lated by

VABC ¼ V1 þ V2 � V3

¼ p
3
� ½ðz1 � z2Þðr2

1 þ r2
2 þ r1r2Þ þ ðz2 � z3Þðr2

2 þ r2
3 þ r2r3Þ

� ðz1 � z3Þðr2
1 þ r2

3 þ r1r3Þ�

According to the fundamental of two-dimensional cylindrical
coordinate system, the control volume of triangle ABC should be
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Fig. 15. The grid system in Example 3: (a) Structured; (b) Unstructured.

Table 5
Computation parameters in Example 3.

Case number r�1 r�1=r�2 Gr

1 0.01 0.0099 105

2 0.01 0.0099 106

3 0.1 0.0909 105

4 0.1 0.0909 106

5 1.0 0.5 105

6 1.0 0.5 106
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the volume of the solid of revolution formed by rotating the triangle
ABC by 1 degree, shown in Fig. 5. Hence

VCV ¼
VABC

2p

¼ 1
6
� ½ðz1 � z2Þðr2

1 þ r2
2 þ r1r2Þ þ ðz2 � z3Þðr2

2 þ r2
3 þ r2r3Þ

� ðz1 � z3Þðr2
1 þ r2

3 þ r1r3Þ�

For situation 2, taking r2 < r3 for example, the combination and split
method is shown in Fig. 6. V1, V2 and V3 can be defined and ex-
pressed similar with situation 1. According Fig. 6, we
have,SDABC = A2 � A1 � A3.Hence,

VABC ¼ V2 � V1 � V3

¼ p
3
� ½ðz2 � z3Þðr2

2 þ r2
3 þ r2r3Þ � ðz2 � z1Þðr2

1 þ r2
2 þ r1r2Þ

� ðz1 � z3Þðr2
1 þ r2

3 þ r1r3Þ�

It is deduced that,

VCV ¼
VABC

2p
¼ 1

6
� ðz2 � z3Þðr2

2 þ r2
3 þ r2r3Þ

�
�ðz2 � z1Þðr2

1 þ r2
2 þ r1r2Þ � ðz1 � z3Þðr2

1 þ r2
3 þ r1r3Þ

�
The stereogram of the triangular control volume is shown in Fig. 7.

The unstructured control volume could be determined conve-
niently by the above mentioned combination and split methods.
Although the method is performed on the triangular grids, same
procedures could be straightforwardly extended to that on an
unstructured quadrilateral grids system.

3. Numerical examples and results discussions

Three numerical examples, named Example 1, Example 2 and
Example 3, are well devised to verify the correctness of the pro-
posed unstructured grids-based discretization method. Example
1 and Example 2 are associated with the two-dimensional natu-
ral convection problem and lid-driven cavity flow problem with-
in a regular computation domain in a cylindrical coordinate
system respectively, while Example 3 is that in an irregular
domain.

Since the structured grids-based discretization method for the
two-dimensional convection–diffusion equation in a cylindrical
coordinate is mature, and can be found in some literatures, and
the results can be validated by some benchmark solutions as well,
we choose the results on structured grids as the reference solution
to validate the results on unstructured grids. In addition, the re-
sults for Example 3 (irregular domain) will also be validated by
the results calculate by FLUENT.

In Example 1, the natural convection problem in a cylindrical
cavity is concerned. Due to the symmetry, the physical problem
could be reduced to a two-dimensional coordinate one. The com-
putation domain and boundary conditions are shown in Fig. 8, in
which r1 and r1 + L indicate the inner diameter and outer diameter
respectively, where L is the length of each boundary. The left and
right boundaries are of the first-type boundary conditions, with
higher temperature of Th on the left boundary (inner cylinder wall)
and cooler temperature of Tc on the right one (outer cylinder wall)
and insulated boundary condition for the upper and lower bound-
aries. Other parameters are listed in Table 3.

The computation domains are mapped by structured and
unstructured grids respectively, which are shown in Fig. 9. In this
example, the validations of the proposed method are performed
with five cases with different computation parameters shown in
Table 3. In the table, r�1 ¼ r1=L, r�2 ¼ r2=L .

With the six groups of computation parameters as listed in Ta-
ble 3, the natural convection problem is calculated by both the
structured grids-based method and unstructured grids-based
method. The numerical results calculated by the two approaches
are compared. Fig. 10 presents the comparison of temperature
fields calculated by the two methods, of which the results agree
well with each other. It can also be found that with the increase
of r�1=r�2, the temperature fields are gradually approaching to the
benchmark solution [7] of a Cartesian coordinate case with same
computation parameters. In addition, Fig. 11 presents the compar-
ison of the centerline velocity components calculated by the two
methods, also showing good agreement between them. All the
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Fig. 16. Comparison of temperature fields with different computation parameters: (a) r�1 ¼ 0:01; Gr ¼ 105; (b) r�1 ¼ 0:01; Gr ¼ 106; (c) r�1 ¼ 0:1; Gr ¼ 105; (d)
r�1 ¼ 0:1; Gr ¼ 106; (e) r�1 ¼ 1:00; Gr ¼ 105; (f) r�1 ¼ 1:00; Gr ¼ 106.
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numerical results indicate that the proposed unstructured grids-
based discretization method is reasonable and accurate.

In Example 2, a lid-driven cavity flow problem in a cylindrical
cavity is investigated by a two-dimensional cylindrical coordinate
model. The computation domain and boundary conditions are
sketched in Fig. 12, in which r1 and r2 indicate the inner diameter
and outer diameter. The length of each boundary is L. A constant
velocity is persistently applied on the left boundary (inner cylinder
wall). Other parameters are listed in Table 4. In the table, r�1 ¼ r1=L,
r�2 ¼ r2=L .

The flow fields of the lid-driven cavity flow are calculated by the
structured grids-based method and unstructured grids-based
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Fig. 17. Comparison of temperature fields calculated by the proposed method and those calculated by fluent at r�1 ¼ 0:1; Gr ¼ 105: (a) contours of temperature field
calculated by FLUENT; (b) comparison of temperature fields calculated by the proposed method and FLUENT.
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method respectively with the parameters listed in Table 4, and the
centerline velocity component are compared in Fig. 13. It can be
seen that the results of the two methods agree well with each
other, and with the increase of r�1=r�2, the results are gradually
approaching to the benchmark solution [8] of a Cartesian coordi-
nate case with identical computation parameters, which indicates
the proposed unstructured grids-based method is accurate.

The computation domain involved in the two above-referred
examples are all regular and could be mapped by the structured
grids, and the advantage and irreplaceability of unstructured grids
in a two-dimensional cylindrical coordinate are not revealed. So, in
Example 3, the natural convection in an irregular cylindrical cavity
is investigated. The three-dimensional cavity is a solid of revolu-
tion formed by rotating the geometry shape shown in Fig. 14 about
z-axis by 360 degrees. Due to the symmetry of the physical domain
and solutions, only the two-dimension domain shown in Fig. 14
needs to be investigated. In the figure, the length of the upper
boundary is r2�r1 = H = 1 m, and the length of the lower boundary
L = 0.4 m. The right curve boundary is determined by a cubic curve
defined as z ¼ 1

0:43 ½r � ðr1 þ 0:6Þ�3. The left and right boundaries are
of the first-type boundary conditions, with higher temperature of
Th at the left boundary and cooler temperature of Tc on the right
one and insulated boundary condition for the upper and lower
boundaries.

For the irregular domain shown in Fig. 14, it is impossible to
map it with orthogonal structured grids, but it can be mapped per-
fectly by the unstructured grid such as triangular grids. To validate
the correctness of the proposed method the irregular domain is
involved in a square domain shown in Fig. 15(a), and this square
domain could be mapped by orthogonal structured grids. Under
this circumstance, the boundary condition is affected on the nodes
which are adjacent to the real boundary, i.e. the first-type bound-
ary condition can be given to the left boundary and right boundary
by assigning all the grid nodes in the lower left region of the left
boundary and the lower right region of the right boundary with
the values corresponding to the real boundary conditions respec-
tively. If the grids are dense enough, the grid approximated meth-
od is acceptable. Fig. 15 presents the structured and unstructured
grid systems (a coarse one) for the irregular domain in Example
3. A group of results are calculated on a structured grid system
with dense enough cells, and chosen to be the reference solutions.
The results calculated by the unstructured grids are compared with
these reference solutions to validate the correctness. In addition,
the results calculated by FLUENT software are also employed to
validate the results calculated by the proposed method. With the
computation parameters as shown in Table 5, the temperature
fields are calculated by the two methods and compared. In Table 5,
r�1 ¼ r1=H; r�2 ¼ r2=H.

Fig. 16 presents the comparison of temperature fields calculated
by the structured grids-based and the unstructured grids-based
discretization method, with the computation parameters as listed
in Table 5. It can be seen that the results of the two methods agree
well with each other. With structured grids, large amount of grid
cells are required to approximate the irregular domain and the
treatment of the boundary condition is complicated, while the
unstructured grids present very good flexibility to the irregular do-
main and thus lead to more accurate results than that of structured
grids for an irregular domain. The results of the proposed method
are also compared with those calculated by FLUENT. Fig. 17 pre-
sents the comparison of the results calculated by the proposed
method and FLUENT in cased 2 of Example 3. It is found that the
result calculated by the proposed method agrees well with that
calculated by FLUENT.

The three numerical examples demonstrated above indicate
that the proposed unstructured grids-based discretization method
for the convection–diffusion equations is reasonable and accurate.

4. Conclusions

This article proposes an unstructured grids-based discretization
method for the convection–diffusion equations in cylindrical coor-
dinates, in the framework of a finite volume approach. Numerical
results have validated the correctness of the proposed method.
Although, the proposed discretization method is performed only
on unstructured triangular grids, it could be readily extended to
that on an unstructured quadrilateral grids system. The study pro-
vides great convenience for the application of unstructured grids in
a two-dimensional cylindrical coordinate system, leading to the
flexibility of the discretization method for the irregular domains
of any shapes.
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