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In this article, a reduced-order model (ROM) is established by the Galerkin projection method based on a
body-fitted coordinate (BFC) system. Differing from other proper orthogonal decomposition (POD) based
ROMs in relevant literatures, the established model could accurately calculate the physical problems with
geometric shapes different from the sample cases. Two typical numerical examples are given to validate
this advantage. The results show that the average deviation between the results calculated by the pro-
posed ROM and finite volume method (FVM) is less than 0.06 �C. In addition, the established ROM is
proved efficient with the computation speed of the ROM being 128 times and 2749 times faster than that
of FVM in the two examples respectively.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Proper orthogonal decomposition (POD) is a powerful tool for
model reduction, and the computation speed can be significantly
improved by the application of POD reduced-order model (ROM).
Thus this technique has been widely applied in the field of fluid
flow and heat transfer.

In the field of fluid flow, Deane et al. [1] calculated POD basis
functions from the results of direct numerical simulation and
established POD-Galerkin ROMs for transition flows in the grooved
pipeline and those around the cylinder respectively. Ravindran [2]
applied POD method to the real-time control for the flow past an
airfoil. My-Ha et al. [3] employed POD method for optimizing
parameters for underwater bubble explosions to generate a desired
free surface shape. Fogleman et al. [4] analyzed the flow field infor-
mation in a combustion engine by POD ROM. Wei Kang et al. [5]
proposed a nonlinear POD ROM capable of accurately describing
complex fluid dynamical systems.

In the field of heat transfer, Banerjee et al. [6] established a
POD-Galerkin ROM for heat transfer in the semi-conductor based
on finite element method; Raghupathy et al. [7] established a
boundary condition-independent ROM by the combination of
POD-Galerkin method and finite volume method; Bialecki et al.
[8] discussed the treatment of initial field and boundary condition
as well as the error controlling.
To the author’s knowledge, the POD based ROMs in relevant ref-
erences are established for a fixed computational domain, although
the boundary conditions, initial fields and property parameters
may vary. In engineering, we usually come up with such problems
bearing different geometric shapes and sizes but being the same in
physics. Establishing a ROM for the flow and heat transfer process
of such problems has great value in practical engineering.

Our research group has encountered rapid calculation issues of
temperature field of soil surrounding hot oil pipeline with different
diameter and buried depth. In reference [9], we employed the BFC-
based POD ROM to solve this problem which contains simple con-
figuration and boundary condition.

Based on Ref. [9], a much improved BFC-based POD ROM is pre-
sented in this paper. The treatments of Jacobi factor and boundary
conditions are quite different in the present study which extends
the application range of the POD ROM and simplifies coding.

The paper is organized as follows, the establishment of BFC-
based POD reduced-model and treatments of boundary conditions
are given firstly, then the accuracy and robustness of the BFC-based
reduced-order model is validated by two complex examples.

2. Establishment of the BFC-based POD-Galerkin ROM

The governing equation defined in the BFC for heat conduction
problem, transformed from Cartesian coordinate system, is as
follows
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Nomenclature

Roman symbols
T temperature (�C)
S physical source term (W/m3)
ak spectrum coefficients
R residue of the governing equation
qn heat flux on the left and right boundaries of the compu-

tation domain (W/m2)
qg heat flux on the up and down boundaries of the compu-

tation domain (W/m2)

Greek symbols
C heat conductivity (W/(m2 �C))
n, g coordinates in a body-fitted coordinate system
a, b, c, J geometric parameters in the governing equation
/ basis function
X inner product space
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According to the fundamentals of POD, only the first M basis
functions are needed to accurately construct the physical field, that
is

Tðn;gÞ ¼
XM

k¼1

ak/kðn;gÞ ð2Þ

Here we define R as the residue of the governing equation
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In Ref. [9], a special engineering problem without source term is
encountered and the Jacobi factor is directly divided out in the
establishment process of the ROM. Actually, in establishing more
universal reduced-order model, when the residual is defined, Jaco-
bi factor should be put into the source term, otherwise it needs to
calculate spatial derivative of Jacobi factor in the ROM which
would affect the accuracy of ROM.

Substituting Eq. (2) into Eq. (3) and set the value of the projec-
tion to the basis function space as zero, we have
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The first term on the right hand side of the equal sign can be written
as below
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Applying Green theorem, Eq. (5) could be written as follows
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Similarly, the second term on the right side of the equal sign in Eq.
(4) can be expressed by Eq. (7) as below
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And the third term on the right side of the equal sign in Eq. (4) could
be described by

ðJSðn;gÞ;/iÞ ¼
Z
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Substituting Eqs. (6)–(8) into Eq. (4), according to the definition of
normal derivative on the computation domain, we have
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According to the definition of heat flux on the boundary, the evolu-
tion equation of amplitudes can be obtained as follows
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It can be seen from Eq. (10), the boundary conditions of the
physical domain are introduced in the form of heat flux q. Now,
the treatment of boundary condition will be clearly introduced
by taking the treatment of qn for example.

In Ref. [9], three kinds of boundary conditions are dealt with
respectively. Here we unify the three kinds of conditions into one
expression, the heat flux qn on the boundary can be written as

qn ¼ ACðaTn � bTgÞ=ðJ
ffiffiffi
a
p
Þ þ Bqw þ Chf ðTf � TðN0ÞÞ ð11Þ

where, A = 1, B = 0, C = 0 for the first-type boundary condition; A = 0,
B = 1, C = 0 for the second-type boundary condition, and A = 0, B = 0,
C = 1 for the third-type boundary condition.

The above equation can be divided into a term without the
amplitudes (the first term on the right side of the equal sign in
Eqs. (12) and (13) to be solved and a term with the amplitudes
(the second term on the right side of the equal sign in Eqs. (12)
and (13).



Table 2
Computational parameters for validation cases.

Validation cases in Example 1

Parameter r2 r1 H k hf Tf Tw

m m m W/(m �C) W/(m2 �C) �C �C
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where, N0 is the identifier of the grid on the boundary, N1 is the
identifier of the inner grid adjacent to the boundary grid N0, d is
the distance between grid N0 and N1.
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Fig. 1. Sketch map of the two validation examples.

Table 1
Computation parameters of the sample cases in Example 1 and Example 2.

Sample cases in Example 1

Parameter r2 r1 H k hf Tf Tw

m m m W/(m �C) W/(m2 �C) �C �C

Value 0.1 0.8 0.1 0.4 5 10 �10
0.3 1 0.3 1.4 20 30 15

Sample cases in Example 2

Parameter A x hf k Tf

m rad/m w/(m2 �C) w/(m �C) �C

Value 0.2 1 5 0.4 10
0.4 4 20 1.4 30
Substituting Eqs. (12) and (13) into Eq. (10), the influences of
boundary conditions could be introduced into the evolution equa-
tion of amplitudes. The amplitudes could be obtained by solving
the final evolution equation of amplitudes, and the temperature
filed can be constructed by Eq. (2).
3. Numerical examples and results

In this section, two examples, named Examples 1 and 2, are
employed to validate the flexibility of the established model. The
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Fig. 2. Comparisons of the results calculated by POD and FVM in Example 1.

Within the range 0.15 0.85 0.15 0.8 10 15 0
0.25 0.95 0.25 1.2 15 20 8

Out of the range 0.4 2 �0.1 5 1 5 �15
0.8 4 1 10 40 40 30

Validation cases in Example 2

Parameter A x hf k Tf

Case number m rad/m W/(m2 �C) W/(m �C) �C

1 0.3 1 15 3 13
2 0.5 1 15 3 13
3 0.3 2 10 1 8
4 0.2 2 10 1 8
5 0.3 3 3 0.3 10
6 0.3 1 15 3 13
7 0.5 1 15 3 13
8 0.3 2 10 1 8
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physical domains and the boundary conditions can be seen in
Fig. 1(a) and (b) respectively.

According to the classic procedures of implementing POD ROM,
generating the matrices of the samples is the first step. For the
problems which have more variable parameters, sample matrices
are usually obtained by overlying different samples bearing differ-
ent boundary conditions. The computational parameters in Exam-
ples 1 and 2 are generated by the permutation and combination of
the two values for each parameter in Table 1, which means 128
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Fig. 3. Comparisons of the results calculated by POD ROM and FVM in Exam
cases are calculated in Example 1 and 32 cases in Example 2. For
Examples 1 and 2, the samples are respectively calculated on the
meshes consisting of 80 � 80 cells and 120 � 120 cells by FVM
using a Gauss–Seidel solver combined with successive over-
relaxation (SOR) (the relaxation factor is 1.5) and the convergence
criterion is the norm of error lower than 10�8.

By snapshot method, 128 and 32 basis functions are obtained
for Examples 1 and 2 respectively from the sampling matrices.
Although the first 6 basis functions can capture most of the energy,
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ple 2, the values in the brackets are the average errors of POD results.
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20 basis functions are required to achieve acceptable accuracy for
this two Examples. The reason is that some energy of the basis
functions is still located in the areas where the geometric shape
sharply changes, although its total energy contribution is very
sparse.

After the basis functions are obtained, validation cases are de-
signed. The computational parameters for the validation cases in
Examples 1 and 2 are listed in Table 2. Example 1 includes 256
cases, and its computational parameters are determined by the
permutation and combination of the two values for each parameter
in Table 2. Among the 256 cases, their computational parameters
are within the range of sample parameters, while the other half
are out of the range of them. For the 8 cases in Example 2, their
geometric parameters A and x are different from those of the sam-
ple cases as listed in Table 2, indicating that there is significant dif-
ference in geometric shapes between the validation cases and
sample cases. In particular, for cases 7 and 8, part of the left bound-
ary in the validation cases is curved, while it is straight in the sam-
ple cases.

Fig. 2 presents four typical results of the validation cases in
Example 1, which bear different geometric shape from the sample
cases. The solid line represents the result achieved by POD ROM,
and the dashed line stands for the results calculated by FVM. It
can be observed that the proposed ROM is accurate even if there
is significant difference in geometric shape between the validation
cases and sample cases, and this demonstrates the robustness of
the proposed model. It can be obtained the average errors of all
the validation cases are very small and limited within the range
of 0.0025–0.0325 �C. It is also found that the average errors of
the cases containing the parameters out of the range of sample
parameters are still lower than 0.0325 �C, even with significant dif-
ference in geometric shape between the validation cases and sam-
ple cases. To demonstrate the degree to which the present ROM
could still provide a reliable solution, typical outer diameter as
well as out arc temperature are selected and tests are conducted
in a range that is much beyond the sample range. The research re-
sults revealed that if the maximum of tolerable average error is set
to be 0.01 �C, the value of r1 could reach 6m and the value of Tw

could reach 30 �C which are 6 times and 2 times of the maximum
sampling value respectively. While the tolerable average error is
set to be 0.02 �C, the value of Tw could be 4 times of the maximum
sampling value and the value of r1 could be 15 times of the maxi-
mum sampling value. All this further validates the accuracy and
robustness of the proposed BFC-based POD model.

In Fig. 3, the temperature fields gained by the ROM and FVM are
compared. The solid line denotes the result by POD ROM, and the
dashed line represents that by FVM, and the average deviations
are embedded in brackets. It can be seen from Fig. 3 that the results
calculated by POD ROM agree well with those by FVM, with the
maximum average error lower than 0.06 �C. It is proved that the
proposed BFC-based POD ROM is accurate enough even if there is
significant difference in geometric shape between the validation
cases and sampling cases. And thus the robustness of the model
could be validated.

At last, the computation time cost by FVM and the established
model are compared Average time of Example 1 cost by FVM and
POD are 3.486 and 0.027 s respectively. 318.96 and 0.116 s are
respectively consumed by FVM and POD of Example 2. Obviously,
the advantage of the ROM is remarkable with its computation
speed of the ROM being hundreds times faster than that of FVM,
and this advantage would be much more remarkable on a denser
mesh.

4. Conclusions

A ROM is established by the Galerkin projection method based
on a body-fitted coordinate system. The proposed model has been
employed to calculate two heat transfer problems bearing different
geometric shapes and sizes with those of sample cases, and the re-
sults have been validated to be accurate. The successful application
of BFC-based POD ROM to heat transfer problems could be easily
extended to other engineering problems which bear different geo-
metric shapes but the same flow and heat transfer process.
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